
Ahmed H. Zahran

1 Stack Data Structure

In this section, we �rst introduce stack data structure and present a template representation for
this data structre. We also show some common applications for stack data structure.

1.1 Introduction to Stacks

• Stack is a data structure into which we insert items at the top and retrieve those items in
last-in, �rst-out order independent of the type of the items being placed in the stack.

• To instantiate a stack, a data type must be speci�ed. This creates a wonderful opportunity
for software reusability.

• From operation perespective, the following operations are required for stacks

� Push operation adds a new item to the top of the stack, or initializes the stack if it is
empty. If the stack is full and does not contain enough space to accept the given item,
the stack is then considered to be in an over�ow state.

� Pop operation removes an item from the top of the stack. A pop either reveals
previously concealed items, or results in an empty stack, but if the stack is empty then
it goes into under�ow state (It means no items are present in stack to be removed).

� Clear operation removes all stack elements

� isEmpty checks if the stack has data or not.

� top operation (also known as peek) retruns the value of the �rst element without
removing it.

• Stack is very useful in many applications, speci�cally when data has to be stored and retrived
in the reverse order. Example applications include

� matching delimiter in a program. In C++, delimiters include (),[],{}, and /**/.
mismatcing dilimiters indicates a code error. (Example in Drozdek book, ch 4)

� Adding large numbers (Example in Drozdek book, ch 4)

� Evaluating mathematical expressions (is explained later.)

1.2 Stack Template Implementation

• In this example, the Stack class-template looks like a conventional class de�nition, except
that it is preceded by the header (line 5)

1 template< typename T >

to specify a class-template de�nition with type parameter T which acts as a placeholder for
the type of the Stack class to be created.

ELC303B: Computer 3-Data Structures 1 Lecture Notes

1.2 Stack Template Implementation Ahmed H. Zahran

• The type of element to be stored on this Stack is mentioned generically as T throughout the
Stack class header and member-function de�nitions.

1 // Stack c l a s s template .
2 #i f n d e f STACK_H
3 #de f i n e STACK_H
4
5 template< typename T >
6 c l a s s Stack
7 {
8 pub l i c :
9 Stack (i n t = 10) ; // d e f au l t c on s t ruc to r (Stack s i z e 10)
10
11 // de s t ru c t o r
12 ~Stack ()
13 {
14 d e l e t e [] s tackPtr ; // d e a l l o c a t e i n t e r n a l space f o r Stack
15 } // end ~Stack de s t ru c t o r
16
17 bool push (const T&) ; // push an element onto the Stack
18 bool pop (T&) ; // pop an element o f f the Stack
19
20 // determine whether Stack i s empty
21 bool isEmpty () const
22 {
23 re turn top == −1;
24 } // end func t i on isEmpty
25
26 // determine whether Stack i s f u l l
27 bool i s F u l l () const
28 {
29 re turn top == s i z e − 1 ;
30 } // end func t i on i s F u l l
31
32 p r i va t e :
33 i n t s i z e ; // # of e lements in the Stack
34 i n t top ; // l o c a t i o n o f the top element (−1 means empty)
35 T ∗ s tackPtr ; // po in t e r to i n t e r n a l r ep r e s en t a t i on o f the Stack
36 } ; // end c l a s s template Stack
37
38 // con s t ruc to r template
39 template< typename T >
40 Stack< T >:: Stack (i n t s)
41 : s i z e (s > 0 ? s : 10) , // va l i d a t e s i z e
42 top (−1) , // Stack i n i t i a l l y empty
43 stackPtr (new T[s i z e]) // a l l o c a t e memory f o r e lements
44 {

ELC303B: Computer 3-Data Structures 2 Lecture Notes

1.2 Stack Template Implementation Ahmed H. Zahran

45 // empty body
46 } // end Stack cons t ruc to r template
47
48 // push element onto Stack ;
49 // i f s u c c e s s f u l , r e turn t rue ; otherwise , r e turn f a l s e
50 template< typename T >
51 bool Stack< T >:: push (const T &pushValue)
52 {
53 i f (! i s F u l l ())
54 {
55 stackPtr [++top] = pushValue ; // p lace item on Stack
56 re turn true ; // push s u c c e s s f u l
57 } // end i f
58
59 re turn f a l s e ; // push un su c c e s s f u l
60 } // end func t i on template push
61
62 // pop element o f f Stack ;
63 // i f s u c c e s s f u l , r e turn t rue ; otherwise , r e turn f a l s e
64 template< typename T >
65 bool Stack< T >::pop (T &popValue)
66 {
67 i f (! isEmpty ())
68 {
69 popValue = stackPtr [top−−] ; // remove item from Stack
70 re turn true ; // pop s u c c e s s f u l
71 } // end i f
72
73 re turn f a l s e ; // pop un su c c e s s f u l
74 } // end func t i on template pop
75
76 #end i f

ELC303B: Computer 3-Data Structures 3 Lecture Notes

1.2 Stack Template Implementation Ahmed H. Zahran

CODING TIPS
A common problem is that a header �le is required in multiple other header �les that are later
included into a source code �le, with the result often being that variables, structs, classes or
functions appear to be de�ned multiple times (once for each time the header �le is included).
This can result in a lot of compile-time headaches. Fortunately, the preprocessor provides an easy
technique for ensuring that any given �le is included once and only once.
By using the #ifndef directive, you can include a block of text only if a particular expression is
unde�ned; then, within the header �le, you can de�ne the expression. This ensures that the code
in the #ifndef is included only the �rst time the �le is loaded.

1 #i f n d e f _FILE_NAME_H_
2 #de f i n e _FILE_NAME_H_
3
4 /∗ code ∗/
5
6 #end i f // #i f n d e f _FILE_NAME_H_

Notice that it's not necessary to actually give a value to the expression _FILE_NAME_H_. It's
su�cient to include the line "#de�ne _FILE_NAME_H_" to make it "de�ned". (Note that
there is an n in #ifndef�it stands for "if not de�ned").

• Due to the way this class template is designed, there are two constraints for nonfundamental
data types used with this Stack

1. they must have a default constructor (for use in line 43 to create the array that stores
the stack elements), and

2. they must support the assignment operator (lines 54 and 68).

• The member-function de�nitions of a class template are function templates. The member-
function de�nitions that appear outside the class template de�nition each begin with the
header

1 template< typename T >

(lines 39, 50 and 64). Thus, each de�nition resembles a conventional function de�nition,
except that the Stack element type always is listed generically as type parameter T.

• When doubleStack is instantiated as type Stack< double >, the Stack constructor function-
template specialization uses new to create an array of elements of type double to represent
the stack (line 43).

1 s tackPtr = new T[s i z e] ;

in the Stack class-template de�nition is generated by the compiler in the class-template
specialization Stack< double > as

ELC303B: Computer 3-Data Structures 4 Lecture Notes

1.2 Stack Template Implementation Ahmed H. Zahran

1 stackPtr = new double [s i z e] ;

ELC303B: Computer 3-Data Structures 5 Lecture Notes

1.2 Stack Template Implementation Ahmed H. Zahran

• The following code represent a driver for the developed stack template. The driver program
begins by instantiating object doubleStack of size 5 (line 10). This object is declared to be of
class Stack< double > (pronounced "Stack of double"). The compiler associates type
double with type parameter T in the class template to produce the source code for a Stack
class of type double. Although templates o�er software-reusability bene�ts, remem-
ber that multiple class-template specializations are instantiated in a program (at
compile time), even though the template is written only once.

1 // Stack c l a s s template t e s t program .
2 #inc lude <iostream>
3 us ing std : : cout ;
4 us ing std : : endl ;
5
6 #inc lude "Stack . h" // Stack c l a s s template d e f i n i t i o n
7
8 i n t main ()
9 {
10 Stack< double > doubleStack (5) ; // s i z e 5
11 double doubleValue = 1 . 1 ;
12
13 cout << "Pushing e lements onto doubleStack \n" ;
14
15 // push 5 doubles onto doubleStack
16 whi l e (doubleStack . push (doubleValue))
17 {
18 cout << doubleValue << ' ' ;
19 doubleValue += 1 . 1 ;
20 } // end whi l e
21
22 cout << "\nStack i s f u l l . Cannot push " << doubleValue
23 << "\n\nPopping e lements from doubleStack \n" ;
24
25 // pop elements from doubleStack
26 whi l e (doubleStack . pop (doubleValue))
27 cout << doubleValue << ' ' ;
28
29 cout << "\nStack i s empty . Cannot pop\n" ;
30
31 Stack< in t > intStack ; // d e f au l t s i z e 10
32 i n t intValue = 1 ;
33 cout << "\nPushing e lements onto in tStack \n" ;
34
35 // push 10 i n t e g e r s onto in tStack
36 whi l e (in tStack . push (intValue))
37 {
38 cout << intValue << ' ' ;
39 intValue++;

ELC303B: Computer 3-Data Structures 6 Lecture Notes

1.3 Other Stack Implememtations Ahmed H. Zahran

40 } // end whi l e
41
42 cout << "\nStack i s f u l l . Cannot push " << intValue
43 << "\n\nPopping e lements from intStack \n" ;
44
45 // pop elements from intStack
46 whi l e (in tStack . pop (intValue))
47 cout << intValue << ' ' ;
48
49 cout << "\nStack i s empty . Cannot pop" << endl ;
50 re turn 0 ;
51 } // end main

1.3 Other Stack Implememtations

• Linked list implementation (Discussion)

1.4 Evaluating Mathematical expressions using stacks

1.4.1 Introduction

Mathematical expression can be written in di�erent notations including In�x, Post�x and Pre�x.
It is easiest to demonstrate the di�erences by looking at examples of operators that take two
operands.

• In�x notation: X + Y

� Operators are written in-between their operands.

� This is the usual way we write expressions.

� An expression such as A * (B + C) / D is usually taken to mean something like: "First
add B and C together, then multiply the result by A, then divide by D to give the �nal
answer."

� In�x notation needs extra information to make the order of evaluation of the operators
clear: rules built into the language about operator precedence and associativity, and
brackets () to allow users to override these rules.

� For example, the usual rules for associativity say that we perform operations from left to
right, so the multiplication by A is assumed to come before the division by D. Similarly,
the usual rules for precedence say that we perform multiplication and division before
we perform addition and subtraction.

• Post�x notation (also known as "Reverse Polish notation (RPN)": X Y +

� Operators are written after their operands.

� The in�x expression given above is equivalent to A B C + * D /

ELC303B: Computer 3-Data Structures 7 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

� The order of evaluation of operators is always left-to-right, and brackets cannot be used
to change this order. Because the "+" is to the left of the "*" in the example above,
the addition must be performed before the multiplication.

� Operators act on values immediately to the left of them. For example, the "+" above
uses the "B" and "C". We can add (totally unnecessary) brackets to make this explicit:
((A (B C +) *) D /)

� Thus, the "*" uses the two values immediately preceding: "A", and the result of the
addition. Similarly, the "/" uses the result of the multiplication and the "D".

• Pre�x notation (also known as "Polish notation"): + X Y

� Operators are written before their operands. The expressions given above are equivalent
to / * A + B C D

� As for Post�x, operators are evaluated left-to-right and brackets are super�uous. Opera-
tors act on the two nearest values on the right. I have again added (totally unnecessary)
brackets to make this clear: (/ (* A (+ B C)) D)

� Although Pre�x "operators are evaluated left-to-right", they use values to their right,
and if these values themselves involve computations then this changes the order that
the operators have to be evaluated in. In the example above, although the division
is the �rst operator on the left, it acts on the result of the multiplication, and so the
multiplication has to happen before the division (and similarly the addition has to
happen before the multiplication).

� Because Post�x operators use values to their left, any values involving computations
will already have been calculated as we go left-to-right, and so the order of evaluation
of the operators is not disrupted in the same way as in Pre�x expressions.

• Conversion from one form to another may be accomplished using a stack.

In all three versions, the operands occur in the same order, and just the operators have
to be moved to keep the meaning correct. (This is particularly important for asymmetric
operators like subtraction and division: A - B does not mean the same as B - A; the former
is equivalent to A B - or - A B, the latter to B A - or - B A).

1.4.2 Evaluation of an in�x expression that is fully parenthesized

Analysis: Five types of input characters

Opening bracket

Numbers

Operators

Closing bracket

New line character [\n]

Data structure requirement: A character stack

ELC303B: Computer 3-Data Structures 8 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

Algorithm 1 Evaluation of an in�x expression that is fully parenthesized
1. Read one input character

2. Actions at end of each input

(a) Opening brackets (2.a) Push into stack and then Go to step (1)

(b) Number (2.b) Push into stack and then Go to step (1)

(c) Operator (2.c) Push into stack and then Go to step (1)

(d) Closing brackets, Pop is used four times
The �rst popped element is assigned to op2
The second popped element is assigned to op
The third popped element is assigned to op1
The fourth popped element is the remaining opening bracket, which can be discarded
Evaluate op1 op op2
push the result into the stack
Go to step 1

(e) New line character (2.e) Pop from stack and print the answer and STOP

Eample

ELC303B: Computer 3-Data Structures 9 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

Input: (((2 * 5) - (1 * 2)) / (11 - 9))
Output: 4
Input Symbol Stack (from bottom to top) Operation

((
(((
((((
2 (((2
* (((2 *
5 (((2 * 5
) ((10 2 * 5 = 10 and push
- ((10 -
(((10 - (
1 ((10 - (1
* ((10 - (1 *
2 ((10 - (1 * 2
) ((10 - 2 1 * 2 = 2 & Push
) (8 10 - 2 = 8 & Push
/ (8 /
((8 / (
11 (8 / (11
- (8 / (11 -
9 (8 / (11 - 9
) (8 / 2 11 - 9 = 2 & Push
) 4 8 / 2 = 4 & Push

New line Empty Pop & Print

1.4.3 Evaluation of in�x expression which is not fully parenthesized

Input: (2 * 5 - 1 * 2) / (11 - 9)

Output: 4

Analysis: There are �ve types of input characters which are:

Opening brackets

Numbers

Operators

Closing brackets

New line character (\n)

• By implementing the priority rule for operators, we can evaluate the problem. To do so,
we evaluate the expressions using two stacks, an integer stack that holds the operand and a
character stack that holds the operations and parentheses.

• The Priority rule: we should perform a comparative priority check if an operator is read, and
then push it.

ELC303B: Computer 3-Data Structures 10 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

Algorithm 2 Evaluation of in�x expression which is not fully parenthesized
1. Read an input character

2. Actions that will be performed at the end of each input

(a) Opening brackets (2.a) Push it into character stack and then Go to step (1)

(b) Number (2.b) Push into integer stack, Go to step (1)

(c) Operator (2.c) Do the comparative priority check

i. if the character stack's top contains an operator with equal or higher priority, then
pop it into op

ii. Pop a number from integer stack into op2

iii. Pop another number from integer stack into op1

iv. Calculate op1 op op2 and push the result into the integer stack

v. push the operator read in (2.c) to the character stack

(d) Closing brackets (2.d) Pop from the character stack

i. (2.d.i) if it is an opening bracket, then discard it and Go to step (1)

ii. (2.d.ii) assign the popped element to op

iii. Pop a number from integer stack and assign it op2

iv. Pop another number from integer stack and assign it to op1

v. Calculate op1 op op2 and push the result into the integer stack

vi. Go to the step (2.d)

(e) /n (2.5) Print the result after popping from the stack and STOP

ELC303B: Computer 3-Data Structures 11 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

Input Chr
Stack

Int Stack Operation performed

((
2 (2
* (* Push *
5 (* 2 5
- (* Since '-' has less priority, we do 2 * 5 =

10
(- 10 We push 10 and then push '-'

1 (- 10 1
* (- * 10 1 Push * as it has higher priority
2 (- * 10 1 2
) (- 10 2 Perform 1 * 2 = 2 and push it

(8 Pop - and 10 - 2 = 8 and push, Pop (
/ / 8
(/ (8
11 / (8 11
- / (- 8 11
9 / (- 8 11 9
) / 8 2 Perform 11 - 9 = 2 and push it
/n 4 Perform 8 / 2 = 4 and push it

4 Print the output, which is 4

1.4.4 Evaluation of pre�x expression

Example: / - * 2 5 * 1 2 - 11 9

Algorithm 3 Evaluation of pre�x expression
1. Read one character input at a time and keep pushing it into the character stack until the

new line character is reached

2. Perform pop from the character stack. If the stack is empty, go to step (3)

(a) Number (2.1) Push in to the integer stack and then go to step (2)

(b) Operator (2.2) Assign the operator to op

i. Pop a number from integer stack and assign it to op1

ii. Pop another number from integer stack and assign it to op2

iii. Calculate op1 op op2 and push the output into the integer stack. Go to step (2)

3. Pop the result from the integer stack and display the result

The following table shows the execution after reading the expression to the character stack
(end of step 1)

ELC303B: Computer 3-Data Structures 12 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

Chr stack Int Stack Operation

/ - * 2 5 * 1 2 - 11 9 9
/ - * 2 5 * 1 2 - 9,11
/ - * 2 5 * 1 2 2 11-9=2
/ - * 2 5* 1 2,2
/ - * 2 5* 2,2,1
/ - * 2 5 2,2 1*2=2
/ - * 2 2,2,5
/ - * 2,2,5,2
/ - 2,2,10 5*2=10
/ 2,8 10-2=8

4 8/2=4
print 4

1.4.5 Evaluation of post�x expression

Algorithm 4 Evaluation of post�x expression
1. when encountering an operand: push it

2. when encountering an operator: pop two operands, evaluate the result and push it.

1.4.6 Conversion of an In�x expression that is fully parenthesized into a Post�x
expression

Algorithm 5 In�x to post�x conversion
1. Read a character input

2. Actions to be performed at end of each input

(a) Opening brackets (2.a) Push into stack and then Go to step (1)

(b) Number (2.b) Print and then Go to step (1)

(c) Operator (2.c) Push into stack and then Go to step (1)

(d) Closing brackets (2.d) Pop a character from the stack

i. (2.d.i) If it is an operator, print it, Go to step (2.d)

ii. (2.d.ii) If the popped element is an opening bracket, discard it and go to step (1)

(e) New line character (2.5) STOP

3.

Example

• Input: (((8 + 1) - (7 - 4)) / (11 - 9))

ELC303B: Computer 3-Data Structures 13 Lecture Notes

1.4 Evaluating Mathematical expressions using stacks Ahmed H. Zahran

• Output: 8 1 + 7 4 - - 11 9 - /

Input Operation Stack (after
op)

Output on
monitor

((2.1) Push operand into stack (
((2.1) Push operand into stack ((
((2.1) Push operand into stack (((
8 (2.2) Print it 8
+ (2.3) Push operator into stack (((+ 8
1 (2.2) Print it 8 1
) (2.4) Pop from the stack: Since popped element

is '+' print it
(((8 1 +

(2.4) Pop from the stack: Since popped element
is '(' we ignore it and read next character

((8 1 +

- (2.3) Push operator into stack ((-
((2.1) Push operand into stack ((- (
7 (2.2) Print it 8 1 + 7
- (2.3) Push the operator in the stack ((- (-
4 (2.2) Print it 8 1 + 7 4
) (2.4) Pop from the stack: Since popped element

is '-' print it
((- (8 1 + 7 4 -

(2.4) Pop from the stack: Since popped element
is '(' we ignore it and read next character

((-

) (2.4) Pop from the stack: Since popped element
is '-' print it

((8 1 + 7 4 - -

(2.4) Pop from the stack: Since popped element
is '(' we ignore it and read next character

(

/ (2.3) Push the operand into the stack (/
((2.1) Push into the stack (/ (
11 (2.2) Print it 8 1 + 7 4 - -

11
- (2.3) Push the operand into the stack (/ (-
9 (2.2) Print it 8 1 + 7 4 - -

11 9
) (2.4) Pop from the stack: Since popped element

is '-' print it
(/ (8 1 + 7 4 - -

11 9 -
(2.4) Pop from the stack: Since popped element
is '(' we ignore it and read next character

(/

) (2.4) Pop from the stack: Since popped element
is '/' print it

(8 1 + 7 4 - -
11 9 - /

(2.4) Pop from the stack: Since popped element
is '(' we ignore it and read next character

Stack is empty

/n (2.5) STOP

ELC303B: Computer 3-Data Structures 14 Lecture Notes

Ahmed H. Zahran

2 Queues

2.1 Introduction

• Queues appears naturally in many practical contexts such as person queues, job queues,
packet queues, message queues, and many similar contexts.

• A queue is a data structure in which new elements are added to the rear and are removed
from the front.

• The queue operates as a FIFO (First Input First Output) system

• The main queue operations are

� enqueue(element) adds element to the rear of the queue

� dequeue() removes an element from the front of the queue

� isEmpty() determines if the queue is empty

� isFull() determines if the queue reaches its maximum number of elements

2.2 Queue Linked List Implementation

Only the header of the base list template �le is shown here, the full template list implementation
will be posted to the course website

• Listnode implementation

1 // Template ListNode c l a s s d e f i n i t i o n .
2 #i f n d e f LISTNODE_H
3 #de f i n e LISTNODE_H
4 // forward d e c l a r a t i o n o f c l a s s L i s t r equ i r ed to announce that c l a s s
5 // L i s t e x i s t s so i t can be used in the f r i e nd d e c l a r a t i o n at l i n e 13
6 template< typename NODETYPE > c l a s s L i s t ;
7
8 template< typename NODETYPE>
9 c l a s s ListNode
10 {
11 f r i e nd c l a s s Li s t< NODETYPE >; // make L i s t a f r i e nd
12
13 pub l i c :
14 ListNode (const NODETYPE &) ; // con s t ruc to r
15 NODETYPE getData () const ; // re turn data in node
16 p r i va t e :
17 NODETYPE data ; // data
18 ListNode< NODETYPE > ∗nextPtr ; // next node in l i s t
19 } ; // end c l a s s ListNode
20
21 // con s t ruc to r
22 template< typename NODETYPE>

ELC303B: Computer 3-Data Structures 15 Lecture Notes

2.2 Queue Linked List Implementation Ahmed H. Zahran

23 ListNode< NODETYPE >:: ListNode (const NODETYPE &in f o)
24 : data (i n f o) , nextPtr (0)
25 {
26 // empty body
27 } // end ListNode con s t ruc to r
28 // re turn copy o f data in node
29 template< typename NODETYPE >
30 NODETYPE ListNode< NODETYPE >:: getData () const
31 {
32 re turn data ;
33 } // end func t i on getData
34
35 #end i f

• Template List header

1 // Template L i s t c l a s s d e f i n i t i o n .
2 #i f n d e f LIST_H
3 #de f i n e LIST_H
4
5 #inc lude <iostream>
6 us ing std : : cout ;
7
8 #inc lude " l i s t n o d e . h" // ListNode c l a s s d e f i n i t i o n
9
10 template< typename NODETYPE >
11 c l a s s L i s t
12 {
13 pub l i c :
14 L i s t () ; // con s t ruc to r
15 ~L i s t () ; // de s t ru c t o r
16 void inser tAtFront (const NODETYPE &) ;
17 void insertAtBack (const NODETYPE &) ;
18 bool removeFromFront (NODETYPE &) ;
19 bool removeFromBack (NODETYPE &) ;
20 bool isEmpty () const ;
21 void p r i n t () const ;
22 p r i va t e :
23 ListNode< NODETYPE > ∗ f i r s t P t r ; // po in t e r to f i r s t node
24 ListNode< NODETYPE > ∗ l a s tP t r ; // po in t e r to l a s t node
25
26 // u t i l i t y func t i on to a l l o c a t e new node
27 ListNode< NODETYPE > ∗getNewNode (const NODETYPE &) ;
28 } ; // end c l a s s L i s t
29

ELC303B: Computer 3-Data Structures 16 Lecture Notes

2.2 Queue Linked List Implementation Ahmed H. Zahran

30
31 #end i f

ELC303B: Computer 3-Data Structures 17 Lecture Notes

1 Queues

1.1 Introduction

• Queues appears naturally in many practical contexts such as person queues, job queues, packet queues,
message queues, and many similar contexts.

• A queue is a data structure in which new elements are added to the rear and are removed from the front.

• The queue operates as a FIFO (First Input First Output) system

• The main queue operations are

� enqueue(element) adds element to the rear of the queue

� dequeue() removes an element from the front of the queue

� isEmpty() determines if the queue is empty

� isFull() determines if the queue reaches its maximum number of elements

1.2 Queue Linked List Implementation

Only the header of the base list template �le is shown here, the full template list implementation will be posted to
the course website

• Listnode implementation

// Template ListNode c l a s s d e f i n i t i o n .
#i f n d e f LISTNODE_H
#de f i n e LISTNODE_H
// forward d e c l a r a t i on o f c l a s s L i s t r equ i r ed to announce that c l a s s

// L i s t e x i s t s so i t can be used in the f r i e nd d e c l a r a t i on at l i n e 13
template< typename NODETYPE > c l a s s L i s t ;

template< typename NODETYPE>
c l a s s ListNode
{

f r i e nd c l a s s L i s t< NODETYPE >; // make L i s t a f r i e nd

pub l i c :
ListNode (const NODETYPE &) ; // con s t ruc to r
NODETYPE getData () const ; // re turn data in node

p r i va t e :
NODETYPE data ; // data
ListNode< NODETYPE > ∗nextPtr ; // next node in l i s t

} ; // end c l a s s ListNode

// cons t ruc to r
template< typename NODETYPE>
ListNode< NODETYPE >:: ListNode (const NODETYPE &in f o)

: data (i n f o) , nextPtr (0)
{

// empty body
} // end ListNode cons t ruc to r
// re turn copy o f data in node
template< typename NODETYPE >
NODETYPE ListNode< NODETYPE >:: getData () const
{

re turn data ;
} // end func t i on getData

1

#end i f

• Template List header

// Template L i s t c l a s s d e f i n i t i o n .
#i f n d e f LIST_H
#de f i n e LIST_H

#inc lude <iostream>
us ing std : : cout ;

#inc lude " l i s t n o d e . h" // ListNode c l a s s d e f i n i t i o n

template< typename NODETYPE >
c l a s s L i s t
{
pub l i c :

L i s t () ; // con s t ruc to r
~L i s t () ; // de s t ru c t o r
void inser tAtFront (const NODETYPE &) ;
void insertAtBack (const NODETYPE &) ;
bool removeFromFront (NODETYPE &) ;
bool removeFromBack (NODETYPE &) ;
bool isEmpty () const ;
void p r i n t () const ;

p r i va t e :
ListNode< NODETYPE > ∗ f i r s t P t r ; // po in t e r to f i r s t node
ListNode< NODETYPE > ∗ l a s tP t r ; // po in t e r to l a s t node

// u t i l i t y func t i on to a l l o c a t e new node
ListNode< NODETYPE > ∗getNewNode (const NODETYPE &) ;

} ; // end c l a s s L i s t

#end i f

• Queue Implenetation

#i f n d e f QUEUE_H
#de f i n e QUEUE_H

#inc lude " L i s t . h" // L i s t c l a s s d e f i n i t i o n

template< typename QUEUETYPE >
c l a s s Queue : p r i va t e Lis t< QUEUETYPE >
{
pub l i c :

// enqueue c a l l s L i s t member func t i on insertAtBack
void enqueue (const QUEUETYPE &data)
{

insertAtBack (data) ;
} // end func t i on enqueue

// dequeue c a l l s L i s t member func t i on removeFromFront
bool dequeue (QUEUETYPE &data)

2

{
return removeFromFront (data) ;

} // end func t i on dequeue

// isQueueEmpty c a l l s L i s t member func t i on isEmpty
bool isQueueEmpty () const
{

re turn isEmpty () ;
} // end func t i on isQueueEmpty

// printQueue c a l l s L i s t member func t i on p r in t
void printQueue () const
{

p r i n t () ;
} // end func t i on printQueue

} ; // end c l a s s Queue

#end i f

1.3 Queue Array Implementation

The array implementation of queue is discussed in di�erent references. The main ideas in such implementation
include

• de�ning a front and rear indecies to manage enqueue and dequeue

• managing wraping around on reaching the end of the queue (circular queue)

• how to determine the queue is full or empty?

3

1.4 Priority Queues

• Priority queues are a special type of queues in which queue elements are processed in order of importance/pri-
ority

• The priority queues appears in di�erent contexts

� packets with di�erent priority

� patients at emergency section

• Implementation Approaches

� Unsorted list

∗ Adv: simple insert

∗ Disadv: search before dequeue

� Linked sorted list

∗ Adv: simple dequeue (always get the �rst element)

∗ Disadv: O(N) enqueue as we need to decide where to insert the received object

Appendix- Freindship and inheritance

Friends

• Friends are functions or classes declared with the friend keyword.

• Friends of class A have access to the protected and private members of class A.

• Friendships are not transitive: The friend of a friend is not considered to be a friend unless explicitly speci�ed.

Inheritance

• Inheritance is a mechanism of reusing and extending existing classes without modifying them.

• Inheritance is almost like embedding an object into a class. Suppose that you declare an object x of class A
in the class de�nition of B. As a result, class B will have access to all the public data members and member
functions of class A. However, in class B, you have to access the data members and member functions of class
A through object x.

#inc lude <iostream>
us ing namespace std ;

c l a s s A {
in t data ;

pub l i c :
void f (i n t arg) { data = arg ; }
i n t g () { re turn data ; }

} ;

c l a s s B {
pub l i c :

A x ;
} ;

i n t main () {
B obj ;
obj . x . f (2 0) ;

4

cout << obj . x . g () << endl ;
// cout << obj . g () << endl ;
}

• inheritance mechanism lets you use a statement like obj.g() in the above example. In order for that statement
to be legal, g() must be a member function of class B

#inc lude <iostream>
us ing namespace std ;

c l a s s A {
in t data ;

pub l i c :
void f (i n t arg) { data = arg ; }
i n t g () { re turn data ; }

} ;

c l a s s B : pub l i c A { } ;

i n t main () {
B obj ;
obj . f (2 0) ;
cout << obj . g () << endl ;

}

� Class A is a base class of class B. The names and de�nitions of the members of class A are included in
the de�nition of class B;

� class B inherits the members of class A.

� Class B is derived from class A.

� Class B contains a subobject of type A.

� You can also add new data members and member functions to the derived class.

� You can modify the implementation of existing member functions or data by overriding base class member
functions or data in the newly derived class.

• a derived class inherits every member of a base class except

� its constructor and its destructor.

∗ However, the default constructor (i.e., its constructor with no parameters) and destructor of the base
class are always called when a new object of a derived class is created or destroyed.

∗ The base default constructor can be overridden.

� its operator=() members

� its friends

References

[1] Nell Dale �C++ Plus Data Structures,� 3rd Edition (2003)

[2] Adam Drozdek, �Data Structures and Algorithms in C++,� 2nd Edition

5

Search Algorithms and their Complexities

May 13, 2013

1 Algorithm Complexity

� Informally, an algorithm can be said to exhibit a growth rate on the order of a mathematical
function if beyond a certain input size n, the function f(n) times a positive constant provides
an upper bound or limit for the run-time of that algorithm. In other words, for a given input
size n greater than some n0 and a constant c, the running time of that algorithm will never
be larger than c Ö f(n). This concept is frequently expressed using Big O notation.

� In computer science, big-O notation is used to classify algorithms by how they respond (i.e.,
in their processing time or working space requirements) to changes in input size.

1.1 Calculating the algorithm complexity

� Each instruction has well de�ned execution time. However, the speci�c amount of time to
carry out a given instruction will vary depending on which instruction is being executed and
which computer is executing it.

� To determine the time complexity of an algorithm:

� Express the amount of work done as a sum f1(n) + f2(n) + . . . + fk(n)

� Identify the dominant term fj whose complexity is O(fj) and satis�es

fk(n) < fj(n) ∀k

� Then the time complexity is O(fj)

� Consider the following pseudocode

1 1 get a p o s i t i v e i n t e g e r from input
2 2 i f n > 10
3 3 p r i n t "This might take a whi l e . . . "
4 4 f o r i = 1 to n
5 5 f o r j = 1 to i
6 6 p r i n t i * j
7 7 p r i n t "Done ! "

1

1.2 Common complxity levels are Ahmed H. Zahran

� instructions 1-3 and 7 have �xed execution time independent of the problem size n

� outer loop executes (n + 1) times (note the last check)

� the inner loop executes Instruction 6 i-times for every time the outer loop is visited

� hence, the total running time of line 6 can be calculated as

T6[1 + 2 + ... + n] = T6
(n2 + n)

2

� Big-O Analysis in General

� �nd the section of code that you expect to have the highest order. From there, work
out the algorithmic e�ciency from the outside in

� �gure out the complexity of the outer loop or recursive portion of the code, then

� �nd the complexity of the inner code;

� the total complexity is the complexity of each layer of code multiplied together.

1 i n t x = 0 ;
2 f o r (i n t j = 1 ; j <= n/2 ; j++)
3 f o r (i n t k = 1 ; k <= n*n ; k++)
4 x = x + j + k ;

Outer loop executes n/2 times. For each of those times, inner loop executes n2times, so the
body of the inner loop is executed (n/2) ∗ n2 = n3/2 times. The algorithm is O(n3) .

1.2 Common complxity levels are

� some functions perform independent of the input size. Such functions are said to have Θ(1)
complixity and are known as bounded time functions.

� O(log2N) is also another common complexity level that commonly appears in the operations
that can split the data into halves and proceed with half of the data. Such algorithms are
said to have a logarithmic compplexity.

� O(N) operations are said to have linear complexity and typically every data element is visited
once. Printing a list element is an example for such operations.

� O(Nlog2N) is also another common complexity level that is very common with e�cient
sorting algorithms as will be studied later.

� O(N2) is a polynomial complexity if the second order.

� O(2N) represents exponential complexity.

ELC303B: Computer 3-Data Structures 2 Lecture Notes

1.3 ADT Operation complexity Ahmed H. Zahran

1.3 ADT Operation complexity

� Let's consider the queue ADT for example, the required operations are enqueue, dequeu,
isFull, isEmpty, clear, constructor and destructor

� The complexity of all the operations is O(1) independent of the implementation except
for the clear and the destructor operation of the linked implementation. Note that in
the latter functions, the nodes has to be traversed one by one resulting in a complexity
of O(N) for these operations.

� What about queue array implementation?

� What about queue circular array implementation?

2 Searching Algorithms

� Searching data involves determining whether a value (referred to as the search key) is
present in the data and, if so, �nding the value's location

� Two popular search algorithms are the simple linear search and the faster but more complex
binary search.

2.1 Linear Search

� The linear search compares each element of an array with a search key.

� Linear Search is typically used if the array is not in any particular order. Therefore, the
program must compare the search key with half the elements of the array. To determine that
a value is not in the array, the program must compare the search key to every element in the
array.

� Clearly, the linear search is of complexity O(N)

2.2 Binary Search

� The binary search algorithm is more e�cient than the linear search algorithm, but it requires
that the vector �rst be sorted.

� The �rst iteration of this algorithm tests the middle element in the vector.

� If this matches the search key, the algorithm ends.

� Assuming the vector is sorted in ascending order, then if the search key is less than
the middle element, the search key cannot match any element in the second half of the
vector and the algorithm continues with only the �rst half of the vector (i.e., the �rst
element up to, but not including, the middle element).

� If the search key is greater than the middle element, the search key cannot match any
element in the �rst half of the vector and the algorithm continues with only the second
half of the vector (i.e., the element after the middle element through the last element).

ELC303B: Computer 3-Data Structures 3 Lecture Notes

Ahmed H. Zahran

� Each iteration tests the middle value of the remaining portion of the vector.

� Example: Considering the sorted array [4 5 10 30 34 51 52 56 77 93]. On searching 30, the
item will be located in 4 iterations using binary search.

� The complexity of binary search is O(log2N).

� Selecting Element to compare with

� If the list/array has odd number of elements, the comparison is made with the middle
element

� if the list/array has even number of ellements, you compare with the last element in the
�rst array

� After comparison, the nonmatching element is ignored and the selection is made from the
elements above or below the compared element. For example, on comparing 30 and 34 in
the �rst trial in the example above, the list of considered elements in the next trial is [4 5 10
30] excluding 34.

3 Hashing

� Hashing is a technique that enables searching the data with a complexity O(1)

� Using a key (index) value for each a data record, the key value can be used to represent an
array index that is used for data insertion (no sorting time) and retrieval (no search time)

� The challenge in this design is to de�ne a mapping function between the steored record
data and the key/index value. Such a mapping function is called hash function.

� For illustration, let's assume that we need to de�ne a hash function for the student records of
a class consisting of 100 students. One possible design is to map the student number (which
generally consists of more digits, e.g. 987635). A typical hash function can expressed as
hash(x) = x%.

ELC303B: Computer 3-Data Structures 4 Lecture Notes

Ahmed H. Zahran

� However, the proposed has function may result in the same hash value for two di�erent
records. This situation is known as collision .

� Generally, a collision-free hash �nction is not easy to design.

� a usual approach is to use an array size that is larger than needed. The extra array
positions make the collisions less likely

� A good hash function will distribute the keys uniformly throughout the locations of the
array

� Collison resolution. One way to resolve collisions is to place the colliding record in another
location that is still open. This storage algorithm is called open-addressing.

� Open addressing requires that the array be initialized so that the program can test if
an array position already contains a record.

� A mechanism is required to determine the next array index to be searched.

* linear probing. if hash(x) is full check for [hash(x) + 1].
A common problem with linear probing is clustering by which the colliding elements
forms clusters rather than being evenly distributed in the array. Clustering makes
insertions take longer because the insert function must step all the way through a
cluster to �nd a vacant location. Searches require more time for the same reason.

ELC303B: Computer 3-Data Structures 5 Lecture Notes

Ahmed H. Zahran

* double hashing. double hashing is the most common technique to avoid clustering.
Let i = hash(key). If the location data[i] already contains a record then let i =
(i + hash2(key))%, and try the new data[i]. If that location already contains a
record, then let i = (i + hash2(key))%, and try that data[i], and so forth until a
vacant position is found.

� Chained hashing

� In open addressing, each array element can hold just one entry. When the array is full,
no more records can be added to the table.

� One possible solution is to resize the array and rehash all the entries. This would require
a careful choice of new size and probably require each entry to have a new hash value
computed.

� A better approach is to use a di�erent collision resolution method called chained hashing,
or simply chaining, in which each component of the hash table's array can hold more
than one entry. We still hash the key of each entry, but upon collision, we simply place
the new entry in its proper array component along with other entries that happened to
hash to the same array index.

� The most common way to implement chaining is to have each array element be a linked
list. The nodes in a particular linked list will each have a key that hashes to the same
value.

ELC303B: Computer 3-Data Structures 6 Lecture Notes

Ahmed H. Zahran

Figure 1: Chained Hashing

1 c l a s s LinkedHashEntry {
2 p r i va t e :
3 i n t key ;
4 i n t va lue ;
5 LinkedHashEntry *next ;
6 pub l i c :
7 LinkedHashEntry (i n t key , i n t va lue) {
8 th i s−>key = key ;
9 th i s−>value = value ;
10 th i s−>next = NULL;
11 }
12
13 i n t getKey () {
14 return key ;
15 }
16
17 i n t getValue () {
18 re turn value ;
19 }
20
21 void setValue (i n t va lue) {
22 th i s−>value = value ;
23 }
24
25 LinkedHashEntry *getNext () {
26 re turn next ;
27 }
28
29 void setNext (LinkedHashEntry *next) {

ELC303B: Computer 3-Data Structures 7 Lecture Notes

Ahmed H. Zahran

30 th i s−>next = next ;
31 }
32 } ;

1 const i n t TABLE_SIZE = 128 ;
2
3 c l a s s HashMap {
4 p r i va t e :
5 LinkedHashEntry ** t ab l e ;
6 pub l i c :
7 HashMap() {
8 tab l e = new LinkedHashEntry * [TABLE_SIZE] ;
9 f o r (i n t i = 0 ; i < TABLE_SIZE; i++)
10 tab l e [i] = NULL;
11 }
12
13 i n t get (i n t key) {
14 i n t hash = (key % TABLE_SIZE) ;
15 i f (t ab l e [hash] == NULL)
16 re turn −1;
17 e l s e {
18 LinkedHashEntry * entry = tab l e [hash] ;
19 whi l e (entry != NULL && entry−>getKey () != key)
20 entry = entry−>getNext () ;
21 i f (entry == NULL)
22 re turn −1;
23 e l s e
24 re turn entry−>getValue () ;
25 }
26 }
27
28 void put (i n t key , i n t va lue) {
29 i n t hash = (key % TABLE_SIZE) ;
30 i f (t ab l e [hash] == NULL)
31 tab l e [hash] = new LinkedHashEntry (key , va lue) ;
32 e l s e {
33 LinkedHashEntry * entry = tab l e [hash] ;
34 whi l e (entry−>getNext () != NULL)
35 entry = entry−>getNext () ;
36 i f (entry−>getKey () == key)
37 entry−>setValue (va lue) ;
38 e l s e
39 entry−>setNext (new LinkedHashEntry (key , va lue))

;
40 }
41 }

ELC303B: Computer 3-Data Structures 8 Lecture Notes

REFERENCES Ahmed H. Zahran

42
43 void remove (i n t key) {
44 i n t hash = (key % TABLE_SIZE) ;
45 i f (t ab l e [hash] != NULL) {
46 LinkedHashEntry *prevEntry = NULL;
47 LinkedHashEntry * entry = tab l e [hash] ;
48 whi l e (entry−>getNext () != NULL && entry−>getKey () !=

key) {
49 prevEntry = entry ;
50 entry = entry−>getNext () ;
51 }
52 i f (entry−>getKey () == key) {
53 i f (prevEntry == NULL) {
54 LinkedHashEntry *nextEntry = entry−>

getNext () ;
55 d e l e t e entry ;
56 tab l e [hash] = nextEntry ;
57 } e l s e {
58 LinkedHashEntry *next = entry−>getNext () ;
59 d e l e t e entry ;
60 prevEntry−>setNext (next) ;
61 }
62 }
63 }
64 }
65
66 ~HashMap() {
67 f o r (i n t i = 0 ; i < TABLE_SIZE; i++)
68 i f (t ab l e [i] != NULL) {
69 LinkedHashEntry *prevEntry = NULL;
70 LinkedHashEntry * entry = tab l e [i] ;
71 whi l e (entry != NULL) {
72 prevEntry = entry ;
73 entry = entry−>getNext () ;
74 d e l e t e prevEntry ;
75 }
76 }
77 d e l e t e [] t ab l e ;
78 }
79 } ;

References

[1] Hashing tutorial, http://research.cs.vt.edu/AVresearch/hashing/

ELC303B: Computer 3-Data Structures 9 Lecture Notes

Ahmed H. Zahran

1 Sorting Algorithms

• Sorting places data in order, typically ascending or descending, based on one or more sort
keys .

• Typically, every organization must sort some data, and often, massive amounts of it.

• Sorting is required as it typically reduces search time.

• Sorting large amount of data mat be time consuming. Hence, a fast and e�cient sorting
algorithms is always desirable

• There exists many sorting algorithms including insertion sort, selection sort, bubble sort,

binary tree sort, and quick sort.

• On comparing sorting algorithms, one consider a list of N elements and estimate di�erent
metrics including the number of comparisons made or the number of swap operation per-
formed.

• The e�cieny is may also consider the memory utilization/requirement as a metric on evalu-
ating sorting algorithms

1.1 Selection Sort

• Selection sort algorithm, which is an easy-to-program, but unfortunately ine�cient, sorting
algorithm.

• The algorithm iterates over an array of elements as follows

� The �rst iteration of the algorithm selects the smallest element in the array and swaps
it with the �rst element.

� The second iteration selects the second-smallest element (which is the smallest element
of the remaining elements) and swaps it with the second element.

� The algorithm continues until the last iteration selects the second-largest element and
swaps it with the second-to-last index, leaving the largest element in the last index.

� After the ith iteration, the smallest i items of the array will be sorted into increasing
order in the �rst i elements of the array.

1.1.1 Example: Sort 34 56 4 10 77 51 93 30 5 52

1. 4 56 34 10 77 51 93 30 5 52

(a) 4 5 34 10 77 51 93 30 56 52

(b) 4 5 10 34 77 51 93 30 56 52

(c)

(d)

(e)

(f) 4 5 10 30 34 51 52 56 77 93

ELC303B: Computer 3-Data Structures 1 Lecture Notes

1.1 Selection Sort Ahmed H. Zahran

1.1.2 Selection Sort Implementation

1 // s e l e c t i o n S o r t . cpp
2 // This program puts va lues in to an array , s o r t s the va lue s in to
3 // ascending order and p r i n t s the r e s u l t i n g array .
4 #inc lude <iostream>
5 us ing std : : cout ;
6 us ing std : : endl ;
7
8 #inc lude <iomanip>
9 us ing std : : setw ;
10
11 void s e l e c t i o n S o r t (i n t ∗ const , const i n t) ; // prototype
12 void swap (i n t ∗ const , i n t ∗ const) ; // prototype
13
14 i n t main ()
15 {
16 const i n t a r r ayS i z e = 10 ;
17 i n t a [a r r ayS i z e] = { 2 , 6 , 4 , 8 , 10 , 12 , 89 , 68 , 45 , 37 } ;
18
19 cout << "Data items in o r i g i n a l order \n" ;
20
21 f o r (i n t i = 0 ; i < ar rayS i z e ; i++)
22 cout << setw (4) << a [i] ;
23
24 s e l e c t i o n S o r t (a , a r r ayS i z e) ; // s o r t the array
25
26 cout << "\nData items in ascending order \n" ;
27
28 f o r (i n t j = 0 ; j < ar rayS i z e ; j++)
29 cout << setw (4) << a [j] ;
30
31 cout << endl ;
32 system ("PAUSE") ;
33 re turn EXIT_SUCCESS;
34 }
35 // end main
36
37 // func t i on to s o r t an array
38 void s e l e c t i o n S o r t (i n t ∗ const array , const i n t s i z e)
39 {
40 i n t sma l l e s t ; // index o f sma l l e s t element
41
42 // loop over s i z e − 1 e lements
43 f o r (i n t i = 0 ; i < s i z e − 1 ; i++)
44 {
45 sma l l e s t = i ; // f i r s t index o f remaining array

ELC303B: Computer 3-Data Structures 2 Lecture Notes

1.2 Insertion Sort Ahmed H. Zahran

46
47 // loop to f i nd index o f sma l l e s t element
48 f o r (i n t index = i + 1 ; index < s i z e ; index++)
49
50 i f (array [index] < array [sma l l e s t])
51 sma l l e s t = index ;
52
53 swap (&array [i] , &array [sma l l e s t]) ;
54 } // end i f
55 } // end func t i on s e l e c t i o n S o r t
56
57 // swap va lue s at memory l o c a t i o n s to which
58 // element1Ptr and element2Ptr po int
59 void swap (i n t ∗ const element1Ptr , i n t ∗ const element2Ptr)
60 {
61 i n t hold = ∗ element1Ptr ;
62 ∗ element1Ptr = ∗ element2Ptr ;
63 ∗ element2Ptr = hold ;
64 } // end func t i on swap

1.1.3 E�ciency

• The number of comparison made by selection sort is

(N − 1) + (N − 2) + ... + 1 = N(N − 1)/2

• Hence, seclection sort would take a time proportional to O(N2)

• Hence, selection sort performs poorly with large numbers.

Exercise: write the template implementation of the provided selection sort code.

1.2 Insertion Sort

• Insertion sort is another iterative sorting algorithm

� The �rst iteration of this algorithm takes the second element and, if it is less than
the �rst element, swaps it with the �rst element (i.e., the program inserts the second
element in front of the �rst element).

� The second iteration looks at the third element and inserts it into the correct position
with respect to the �rst two elements, so all three elements are in order.

� At the ith iteration of this algorithm, the �rst i elements in the original array will be
sorted. Note also that the remaining N-i elements are not visted at all.

• The chief virtue of the insertion sort is that it is easy to program; however, it runs slowly.

ELC303B: Computer 3-Data Structures 3 Lecture Notes

1.2 Insertion Sort Ahmed H. Zahran

1.2.1 Example: Sorting 34 56 4 10 77 51 93 30 5 52

1. 34 56 4 10 77 51 93 30 5 52

2. 4 34 56 10 77 51 93 30 5 52

3. 4 10 34 56 77 51 93 30 5 52

4.

5.

6.

1.2.2 Implementation

1 // i n s e r t i o nS o r t . cpp
2 // This program s o r t s an array ' s va lue s in to ascending order .
3 #inc lude <c s td l i b >
4
5 #inc lude <iostream>
6 us ing std : : cout ;
7 us ing std : : endl ;
8
9 #inc lude <iomanip>
10 us ing std : : setw ;
11
12 i n t main ()
13 {
14 const i n t a r r ayS i z e = 10 ; // s i z e o f array a
15 i n t data [a r r ayS i z e] = { 34 , 56 , 4 , 10 , 77 , 51 , 93 , 30 , 5 , 52 } ;
16 i n t i n s e r t ; // temporary va r i ab l e to hold element to i n s e r t
17
18 cout << "Unsorted array : \ n" ;
19
20 // output o r i g i n a l array
21 f o r (i n t i = 0 ; i < ar rayS i z e ; i++)
22 cout << setw (4) << data [i] ;
23
24 // i n s e r t i o n s o r t
25 // loop over the e lements o f the array
26 f o r (i n t next = 1 ; next < ar rayS i z e ; next++)
27 {
28 i n s e r t = data [next] ; // s t o r e the va lue in the cur rent

element
29
30 i n t moveItem = next ; // i n i t i a l i z e l o c a t i o n to p lace element
31
32 // search f o r the l o c a t i o n in which to put the cur rent element

ELC303B: Computer 3-Data Structures 4 Lecture Notes

1.2 Insertion Sort Ahmed H. Zahran

33 whi l e ((moveItem > 0) && (data [moveItem − 1] > i n s e r t))
34 {
35 // s h i f t element one s l o t to the r i g h t
36 data [moveItem] = data [moveItem − 1] ;
37 moveItem−−;
38 } // end whi l e
39
40 data [moveItem] = i n s e r t ; // p lace i n s e r t e d element in to the

array
41 } // end f o r
42
43 cout << "\nSorted array : \ n" ;
44
45 // output so r t ed array
46 f o r (i n t i = 0 ; i < ar rayS i z e ; i++)
47 cout << setw (4) << data [i] ;
48
49 cout << endl ;
50 system ("PAUSE") ;
51 re turn EXIT_SUCCESS;
52 } // end main

1.2.3 Performance

• Best case: sorted array. N comparisons and no swaps!

• Generally, the algorithm complexity is O(N2) as selection sort.

� Insertion sort iterates n times, inserting an element into the appropriate position in the
elements sorted so far.

� For each iteration, determining where to insert the element can require comparing the
element to each of the preceding elements in the vector.

� In the worst case, this will require n comparisons. Each individual repetition statement
runs in O(n) time.

� For determining Big O notation, nested statements mean that you must multiply the
number of comparisons. For each iteration of an outer loop, there will be a certain
number of iterations of the inner loop. In this algorithm, for each O(n) iteration of the
outer loop, there will be O(n) iterations of the inner loop, resulting in a Big O of O(n*
n) or O(n2).

ELC303B: Computer 3-Data Structures 5 Lecture Notes

Ahmed H. Zahran

1 Trees

1.1 Introduction and basic terminology

• A tree is a nonlinear, two-dimensional data structure.

• Tree nodes contain two or more links.

• We will focus only on binary trees, trees whose nodes all contain two links (none, one or both
of which may be null).

• Tree Terminology

� The root node (node B) is the �rst node in a tree.

� Each link in the root node refers to a child (nodes A and D).

� The left child (node A) is the root node of the left subtree (which contains only
node A). Similarly, the right child (node D) is the root node of the right subtree (which
contains nodes D and C).

� The children of a single node are called siblings (e.g., nodes A and D are siblings).

� A node with no children is called a leaf node (e.g., nodes A and C are leaf nodes).

1.2 Binary Search Trees

• A binary search tree (with no duplicate node values)

� the values in any left subtree are less than the value in its parent node

� the values in any right subtree are greater than the value in its parent node

ELC303B: Computer 3-Data Structures 1 Lecture Notes

1.3 Recurssion Ahmed H. Zahran

• Note that the shape of the binary search tree that corresponds to a set of data can vary,
depending on the order in which the values are inserted into the tree

• The major advantage of binary search trees over other data structures is that the related
sorting algorithms and search algorithms

1.3 Recurssion

• A recursive function is a function that calls itself, either directly, or indirectly (through
another function)

• Recursive functions are useful in many applications and are of special importance to the
implementation of binary search trees.

• A recursive function is called to solve a problem. The function actually knows how to solve
only the simplest case(s), or so-called base case(s).

1 // f a c t o r i a l . cpp
2 // Test ing the r e c u r s i v e f a c t o r i a l f unc t i on .
3
4 #inc lude <c s td l i b >
5 #inc lude <iostream>
6 us ing std : : cout ;
7 us ing std : : endl ;
8 #inc lude <iomanip>
9 us ing std : : setw ;
10
11 unsigned long f a c t o r i a l (unsigned long) ; // func t i on prototype
12
13 i n t main ()
14 {
15 // c a l c u l a t e the f a c t o r i a l s o f 0 through 10

ELC303B: Computer 3-Data Structures 2 Lecture Notes

1.3 Recurssion Ahmed H. Zahran

16 f o r (i n t counter = 0 ; counter <= 10 ; counter++)
17 cout << setw (2) << counter << " ! = " << f a c t o r i a l (counter)
18 << endl ;
19
20 system ("PAUSE") ;
21 re turn EXIT_SUCCESS;
22 } // end main
23 // r e c u r s i v e d e f i n i t i o n o f func t i on f a c t o r i a l
24 unsigned long f a c t o r i a l (unsigned long number)
25 {
26 i f (number <= 1) // t e s t f o r base case
27 re turn 1 ; // base ca s e s : 0 ! = 1 and 1 ! = 1
28 e l s e // r e cu r s i on step
29 re turn number ∗ f a c t o r i a l (number − 1) ;
30 } // end func t i on f a c t o r i a l

• If the function is called with a base case, the function simply returns a result.

• If the function is called with a more complex problem, it typically divides the problem into
two conceptual pieces

� a piece that the function knows how to process and

� a piece that it does not know how to process

∗ This part resembles the original problem, but is slightly simpler or slightly smaller
version of the orignal problem.

∗ to solve this part, the function performs a recursive call , i.e. the function calls
itself again with the simpler problem as a parameter.

� The function stops the recurssion and return an answer as it reaches a stopping criteria
or being called with the input representing the basic problem.

• Exercise: Investigate the recursive implementation of list functions including insert, delete,
and print. Hint, you may need to use a reference to a pointer

1 void L i s t : : l i n k e dL i s t I n s e r t (ListNode ∗&headPtr , ListItemType
newItem)

2 {
3 // r e c u r s i v e func t i on implementation .
4 }

� Which is better in your opinion, the recursive and itterative implementations

ELC303B: Computer 3-Data Structures 3 Lecture Notes

1.4 BST Implementation Ahmed H. Zahran

1.4 BST Implementation

• Treenode Implementation

1 // Template TreeNode c l a s s d e f i n i t i o n .
2 #i f n d e f TREENODE_H
3 #de f i n e TREENODE_H
4
5 // forward d e c l a r a t i o n o f c l a s s Tree
6 template< typename NODETYPE > c l a s s Tree ;
7
8 // TreeNode c l a s s−template d e f i n i t i o n
9 template< typename NODETYPE >
10 c l a s s TreeNode
11 {
12 f r i e nd c l a s s Tree< NODETYPE >;
13 pub l i c :
14 // cons t ruc to r
15 TreeNode (const NODETYPE &d)
16 : l e f t P t r (0) , // po in t e r to l e f t subt ree
17 data (d) , // t r e e node data
18 r i gh tPt r (0) // po in t e r to r i g h t subs t r e e
19 {
20 // empty body
21 } // end TreeNode cons t ruc to r
22
23 // re turn copy o f node ' s data
24 NODETYPE getData () const
25 {
26 re turn data ;
27 } // end getData func t i on
28 p r i va t e :
29 TreeNode< NODETYPE > ∗ l e f t P t r ; // po in t e r to l e f t subt ree
30 NODETYPE data ;
31 TreeNode< NODETYPE > ∗ r i gh tPt r ; // po in t e r to r i g h t subt ree
32 } ; // end c l a s s TreeNode
33
34 #end i f

• Tree class header �le

1 // Tree . h
2 // Template Tree c l a s s d e f i n i t i o n .
3 #i f n d e f TREE_H
4 #de f i n e TREE_H
5

ELC303B: Computer 3-Data Structures 4 Lecture Notes

1.4 BST Implementation Ahmed H. Zahran

6 #inc lude <iostream>
7 us ing std : : cout ;
8 us ing std : : endl ;
9
10 #inc lude "Treenode . h"
11
12 // Tree c l a s s−template d e f i n i t i o n
13 template< typename NODETYPE > c l a s s Tree
14 {
15 pub l i c :
16 Tree () ; // con s t ruc to r
17 void insertNode (const NODETYPE &) ;
18 void preOrderTraversa l () const ;
19 void inOrderTraversa l () const ;
20 void postOrderTraversa l () const ;
21 p r i va t e :
22 TreeNode< NODETYPE > ∗ rootPtr ;
23
24 // u t i l i t y f unc t i on s
25 void inser tNodeHelper (TreeNode< NODETYPE > ∗∗ , const NODETYPE &

) ;
26 void preOrderHelper (TreeNode< NODETYPE > ∗) const ;
27 void inOrderHelper (TreeNode< NODETYPE > ∗) const ;
28 void postOrderHelper (TreeNode< NODETYPE > ∗) const ;
29 } ; // end c l a s s Tree
30
31 #end i f

1.4.1 Node Insertion

• A node can only be inserted as a leaf node in a binary search tree.

• If the tree is empty, a new TReeNode is created, initialized and inserted in the tree

• If the tree is not empty, the program compares the value to be inserted with the data value
starting from the root node until the proper location is found and the node is then inserted.

• The process of creating a binary search tree actually sorts the data. Thus, this process is
called the binary tree sort .

1.4.2 Inorder Traversal Algorithm

• Function inOrderTraversal invokes utility function inOrderHelper to perform the inorder
traversal of the binary tree. The steps for an inorder traversal are:

� Traverse the left subtree with an inorder traversal.

ELC303B: Computer 3-Data Structures 5 Lecture Notes

1.4 BST Implementation Ahmed H. Zahran

� Process the value in the nodei.e., print the node value.

� Traverse the right subtree with an inorder traversal.

� the inorder traversal of a binary search tree prints the node values in as-
cending order.

1.4.3 Preorder Traversal Algorithm

• Function preOrderTraversal invokes utility function preOrderHelper to perform the preorder
traversal of the binary tree. The steps for an preorder traversal are:

� Process the value in the node.

� Traverse the left subtree with a preorder traversal.

� Traverse the right subtree with a preorder traversal.

1.4.4 Postorder Traversal Algorithm

• Function postOrderTraversal invokes utility function postOrderHelper to perform the pos-
torder traversal of the binary tree. The steps for an postorder traversal are:

� Traverse the left subtree with a postorder traversal.

� Traverse the right subtree with a postorder traversal.

� Process the value in the node

• Tree class implementation

1 #in l cude <Tree . h>
2 // con s t ruc to r
3 template< typename NODETYPE >
4 Tree< NODETYPE >:: Tree ()
5 {
6 rootPtr = 0 ; // i nd i c a t e t r e e i s i n i t i a l l y empty
7 } // end Tree con s t ruc to r
8
9 // i n s e r t node in Tree
10 template< typename NODETYPE >
11 void Tree< NODETYPE >:: insertNode (const NODETYPE &value)
12 {
13 inser tNodeHelper (&rootPtr , va lue) ;
14 } // end func t i on insertNode
15
16 // u t i l i t y func t i on c a l l e d by insertNode ; r e c e i v e s a po in t e r
17 // to a po in t e r so that the func t i on can modify po in t e r ' s va lue
18 template< typename NODETYPE >
19 void Tree< NODETYPE >:: inser tNodeHelper (
20 TreeNode< NODETYPE > ∗∗ptr , const NODETYPE &value)
21 {

ELC303B: Computer 3-Data Structures 6 Lecture Notes

1.4 BST Implementation Ahmed H. Zahran

22 // subt ree i s empty ; c r e a t e new TreeNode conta in ing value
23 i f (∗ptr == 0)
24 ∗ptr = new TreeNode< NODETYPE >(value) ;
25 e l s e // subt ree i s not empty
26 {
27 // data to i n s e r t i s l e s s than data in cur rent node
28 i f (va lue < (∗ptr)−>data)
29 inser tNodeHelper (&((∗ptr)−>l e f t P t r) , va lue) ;
30 e l s e
31 {
32 // data to i n s e r t i s g r e a t e r than data in cur rent node
33 i f (va lue > (∗ptr)−>data)
34 inser tNodeHelper (&((∗ptr)−>r igh tPt r) , va lue) ;
35 e l s e // dup l i c a t e data value ignored
36 cout << value << " dup" << endl ;
37 } // end e l s e
38 } // end e l s e
39 } // end func t i on insertNodeHelper
40
41 // begin preorder t r a v e r s a l o f Tree
42 template< typename NODETYPE >
43 void Tree< NODETYPE >:: preOrderTraversa l () const
44 {
45 preOrderHelper (rootPtr) ;
46 } // end func t i on preOrderTraversa l
47
48 // u t i l i t y func t i on to perform preorder t r a v e r s a l o f Tree
49 template< typename NODETYPE >
50 void Tree< NODETYPE >:: preOrderHelper (TreeNode< NODETYPE > ∗

ptr) const
51 {
52 i f (ptr != 0)
53 {
54 cout << ptr−>data << ' ' ; // proce s s node
55 preOrderHelper (ptr−>l e f t P t r) ; // t r av e r s e l e f t subt ree
56 preOrderHelper (ptr−>r igh tPt r) ; // t r av e r s e r i g h t

subt ree
57 } // end i f
58 } // end func t i on preOrderHelper
59
60 // begin ino rde r t r a v e r s a l o f Tree
61 template< typename NODETYPE >
62 void Tree< NODETYPE >:: inOrderTraversa l () const
63 {
64 inOrderHelper (rootPtr) ;
65 } // end func t i on inOrderTraversa l
66

ELC303B: Computer 3-Data Structures 7 Lecture Notes

1.4 BST Implementation Ahmed H. Zahran

67 // u t i l i t y func t i on to perform ino rde r t r a v e r s a l o f Tree
68 template< typename NODETYPE >
69 void Tree< NODETYPE >:: inOrderHelper (TreeNode< NODETYPE > ∗ptr

) const
70 {
71 i f (ptr != 0)
72 {
73 inOrderHelper (ptr−>l e f t P t r) ; // t r av e r s e l e f t subt ree
74 cout << ptr−>data << ' ' ; // proce s s node
75 inOrderHelper (ptr−>r igh tPt r) ; // t r av e r s e r i g h t subt ree
76 } // end i f
77 } // end func t i on inOrderHelper
78
79 // begin pos to rder t r a v e r s a l o f Tree
80 template< typename NODETYPE >
81 void Tree< NODETYPE >:: postOrderTraversa l () const
82 {
83 postOrderHelper (rootPtr) ;
84 } // end func t i on postOrderTraversa l
85
86 // u t i l i t y func t i on to perform postorder t r a v e r s a l o f Tree
87 template< typename NODETYPE >
88 void Tree< NODETYPE >:: postOrderHelper (
89 TreeNode< NODETYPE > ∗ptr) const
90 {
91 i f (ptr != 0)
92 {
93 postOrderHelper (ptr−>l e f t P t r) ; // t r av e r s e l e f t subt ree
94 postOrderHelper (ptr−>r igh tPt r) ; // t r av e r s e r i g h t

subt ree
95 cout << ptr−>data << ' ' ; // proce s s node
96 } // end i f
97 } // end func t i on postOrderHelper

ELC303B: Computer 3-Data Structures 8 Lecture Notes

	1-Stack-Notes
	2-Queue-Notes
	3-Searching-Notes
	4-Sorting-Notes
	5-Trees-Notes

